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 8 

Abstract 9 

The same unetched and chemically etched apatites from five rock samples were dated with U–Pb 10 

using laser ablation inductively coupled plasma mass spectrometry. The objective of this study is 11 

to demonstrate whether or not the etching, needed for the apatite fission track analysis, impact on 12 

the obtaining of apatite U–Pb ages. The results of this experiment indicate that the etching has no 13 

effect on the determination of apatite U–Pb ages by the laser ablation inductively coupled plasma 14 

mass spectrometry technique. Thus, laser ablation inductively coupled plasma mass spectrometry 15 

may be used safely for simultaneous apatite fission track in-situ and U–Pb double dating. 16 

 17 

Short summary 18 

Unetched and etched apatites of five samples were dated by U–Pb with laser ablation inductively 19 

coupled plasma mass spectrometry. Our experiment demonstrates that the etching, needed for the 20 

apatite fission track dating, has no important effect on the obtaining of U–Pb ages; and therefore, 21 

the laser ablation-based technique can be used for apatite fission track and U–Pb double dating. 22 

 23 
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 2 

1 Introduction 24 

 25 

Apatite, Ca5(PO4)3[F,Cl,OH], is the most common phosphate mineral in the Earth’s crust and can 26 

be found in practically all igneous and metamorphic rocks, as well as in many ancient and recent 27 

sediments and in certain mineral deposits (Piccoli and Candela, 2002; Morton and Yaxley, 2007; 28 

Webster and Piccoli, 2015). This accessory mineral is often used as a natural thermochronometer 29 

(i.e., for fission track, helium and U–Pb dating; e.g., Zeitler et al., 1987; Wolf et al., 1996; Ehlers 30 

and Farley, 2003; Hasebe et al., 2004; Donelick et al., 2005; Chew and Donelick, 2012; Chew et 31 

al., 2014; Cochrane et al., 2014; Liu et al., 2014; Spikings et al., 2015; Glorie et al., 2017). 32 

Presently, apatite fission track (AFT) ages may be obtained rapidly by using LA–ICP-MS 33 

(laser ablation inductively coupled plasma mass spectrometry) for direct measurement of “parent 34 

nuclides”, i.e., 238U levels (Cox et al., 2000; Svojtka and Košler, 2002; Hasebe et al., 2004, 2009; 35 

Donelick et al., 2005; Vermeesch, 2017). In addition, the LA–ICP-MS-based technique allows to 36 

date apatites simultaneously by AFT and U–Pb (e.g., Chew and Donelick, 2012; Liu et al., 2014; 37 

Glorie et al., 2017; Bonilla et al., 2020; Nieto-Samaniego et al., 2020). After chemical etching of 38 

apatites, a smaller volume of ablated material is analyzed with LA–ICP-MS. Therefore, there is a 39 

doubt on the application of such double dating technique. The question is how chemical etching, 40 

required for the AFT dating, may influence on the obtaining of apatite U–Pb ages? To respond to 41 

this question, the same unetched and etched apatite crystals from five experimental samples were 42 

dated by LA–ICP-MS U–Pb. The chosen rock samples have either emplacement or metamorphic 43 

ages varying from the Early Cretaceous to the Neoproterozoic (for details, please see Table 1). 44 

--- Table 1 --- 45 

 46 
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2 Brief description of samples 47 

 48 

2.1 OV-0421 (Tres Sabanas Pluton, Guatemala) 49 

 50 

This sample is a two mica-bearing deformed granite belonging to the Tres Sabanas Pluton, which 51 

is located NW of Guatemala City, Guatemala. For sample OV-0421, an emplacement age of 115 52 

± 4 Ma was proposed based on zircon U–Pb data (Torres de León, 2016). A cooling age of 102 ± 53 

1 Ma, obtained with K–Ar (on biotite concentrate), has also been reported by the same author. 54 

 55 

2.2. MCH-38 (Chiapas Massif Complex, Mexico) 56 

 57 

MCH-38 is an orthogneiss from the Permian Chiapas Massif Complex. This rock was sampled to 58 

the west of Unión Agrarista, the State of Chiapas, southeastern Mexico. There is no reported age 59 

for this sample. Some zircon U–Pb dates obtained for the Chiapas Massif Complex (Weber et al., 60 

2007, 2008; Ortega-Obregón et al., 2019) suggest that a Lopingian (260–252 Ma) crystallization 61 

or metamorphic age may be assumed for sample MCH-38. 62 

 63 

2.3 TO-AM (Totoltepec Pluton, Mexico) 64 

 65 

TO-AM is a granitic rock, sampled ca. 5 km west of Totoltepec de Guerrero, the State of Puebla, 66 

southern Mexico. There is no reported radiometric data for sample TO-AM. Previous geological 67 

studies indicate that the Pennsylvanian–Cisuralian Totoltepec Pluton was emplaced over a ca. 20 68 

million year period (from 306 ± 2 to 287 ± 2 Ma; e.g., Kirsch et al., 2013). 69 
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 70 

2.4 CH-0403 (Altos Cuchumatanes, Guatemala) 71 

 72 

CH-0403 was collected 5 km ESE of Barillas, in the Altos Cuchumatanes, Guatemala. It consists 73 

of a gray to green granodiorite. Five zircon aliquots of sample CH-0403 were dated using isotope 74 

dilution thermal ionization mass spectrometry, yielding a lower intercept date of 391 ± 8 Ma that 75 

is interpreted as its approximate crystallization age (Solari et al., 2009). 76 

 77 

2.5 OC-1008 (Oaxacan Complex, Mexico) 78 

 79 

This sample is a paragneiss from the Grenvillian Oaxacan Complex, southern Mexico. OC-1008 80 

was collected in the federal road which connects Nochixtlán to Oaxaca. It was demonstrated that 81 

this sample underwent “dry” granulite facies metamorphism at 990 ± 10 Ma (Solari et al., 2014). 82 

 83 

 84 

3 Analytical procedures 85 

 86 

Apatites were concentrated using conventional mineral separation techniques. Nearly 300 apatite 87 

grains, extracted from each rock sample, were mounted with EpoFix™ in a 2.5 cm diameter ring. 88 

Apatites were mounted with their surfaces parallel to the crystallographic c-axis. Mounted grains 89 

were polished to expose their internal surfaces (i.e., up to 4π geometry). For our experiment, only 90 

“sterile” and complete crystals, without visible inclusions and other defects such as cracks, were 91 
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gently selected. Sample preparation was performed at Taller de Molienda, Centro de Geociencias 92 

(CGEO), Campus Juriquilla, Universidad Nacional Autónoma de Mexico (UNAM). 93 

Single spot analyses were performed with a Resonetics RESOlution™ LPX Pro (193 nm, 94 

ArF excimer) laser ablation system, coupled to a Thermo Scientific iCAP™ Qc quadrupole ICP-95 

MS at Laboratorio de Estudios Isotópicos (LEI), CGEO, UNAM. During this experimental work, 96 

LA–ICP-MS-based sampling was performed exactly in central parts of the selected apatite grains 97 

before and after chemical etching (in 5.5M HNO3 at 21 °C for 20 s to reveal spontaneous fission 98 

tracks), as shown schematically in Fig. 1. The LA–ICP-MS protocol used for apatite analyses, as 99 

given in Table 2, was established on the basis of numerous experiments carried out at LEI during 100 

the past five years, and can be used for U–Pb and fission track double dating plus multielemental 101 

analysis (Abdullin et al., 2018; Ortega-Obregón et al., 2019). Corrected isotopic ratios and errors 102 

were calculated using Iolite (Paton et al., 2011) and the VizualAge data reduction scheme (Petrus 103 

and Kamber, 2012). UcomPbine (Chew et al., 2014) was used to model 207Pb/206Pb initial values 104 

and thus force a 207Pb correction that considers the common Pb (non-radiogenic Pb) incorporated 105 

by apatite standards at the moment of their crystallization (see also Ortega-Obregón et al., 2019). 106 

The “First Mine Discovery” apatite from Madagascar, with a mean 206U–238Pb age of ca. 480 Ma 107 

(Thomson et al., 2012; Chew et al., 2014), was used as a main reference material. The results for 108 

measured isotopes using the NIST-612 glass (Pearce et al., 1997) were normalized using 43Ca as 109 

an internal standard and taking an average CaO content of 55% (i.e., for F-apatites). 110 

--- Figure 1 --- 111 

--- Table 2 --- 112 

 113 

 114 
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4 Results 115 

 116 

Tera and Wasserburg Concordia diagrams (T–W; Tera and Wasserburg, 1972) are used in apatite 117 

U–Pb dating, because the LA–ICP-MS-derived U–Pb results are generally discordant. The lower 118 

intercept in the T–W plot is considered as a “mean” apatite U–Pb age that should have geological 119 

significance (crystallization or cooling age, or the ages of mineralization or metamorphic event). 120 

Apatite U–Pb ages were calculated with IsoplotR (Vermeesch, 2017, 2018) and described below. 121 

Detailed information on our U–Pb experiments is given in Table S1 in the Supplement. 122 

 123 

4.1 OV-0421 124 

 125 

For sample OV-0421, 41 unetched apatites analysed yielded a lower intercept age of 106 ± 4 Ma 126 

with a mean square weighted deviation (MSWD) of 1.07, passing the chi-squared probability test 127 

with the P(χ2) value of 0.35 (see Fig. 2). Virtually the same U–Pb age, 107 ± 5 Ma, was obtained 128 

after chemical etching of the same apatite crystals, yielding a MSWD of 1.13 and a P(χ2) of 0.27. 129 

Both these apatite U–Pb ages lie between the zircon U–Pb age of 115 ± 4 Ma (i.e., crystallization 130 

age) and the biotite K–Ar date of 102 ± 1 Ma (i.e., cooling age), which were previously obtained 131 

for the same granite sample by Torres de León (2016). 132 

 133 

4.2. MCH-38 134 

 135 

For orthogneiss sample MCH-38, the lower intercept in T–W yielded a U–Pb age of 245 ± 6 Ma 136 

(obtained from 41 unetched grains) with a MSWD of 0.28 and a P(χ2) of 1. Etched apatite grains 137 
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from MCH-38 yielded an age of 240 ± 4 Ma with a MSWD of 0.36 and a P(χ2) of 1 (Fig. 2). Our 138 

U–Pb ages are in close agreement with geochronological data reported from the Permian Chiapas 139 

Massif Complex in previous studies (Damon et al., 1981; Torres et al., 1999; Schaaf et al., 2002; 140 

Ortega-Obregón et al., 2019). For instance, Torres et al. (1999) compiled biotite K–Ar ages, most 141 

of which lie within the Early–Middle Triassic period. Triassic cooling ages in the Chiapas Massif 142 

Complex were also detected by Rb–Sr in mica–whole rock pairs that range from 244 ± 12 to 214 143 

± 11 Ma (Schaaf et al., 2002). 144 

 145 

4.3 TO-AM 146 

 147 

Unetched apatites (32 crystals; Fig. 2) from granite TO-AM yielded a lower intercept date of 303 148 

± 5 Ma with a MSWD of 0.6 and a P(χ2) of 0.96. After etching, a slightly younger age of 299 ± 3 149 

Ma was obtained, with a MSWD of 0.89 and a P(χ2) of 0.65. These apatite U–Pb dates are in line 150 

with the zircon U–Pb ages of 306 ± 2 to 287 ± 2 Ma reported for the Pennsylvanian to Cisuralian 151 

Totoltepec Pluton (e.g., see details in Kirsch et al., 2013). 152 

 153 

4.4 CH-0403 154 

 155 

36 unetched apatite grains from sample CH-0403 yielded a lower intercept U–Pb age of 345 ± 10 156 

Ma with a MSWD of 0.7 and a P(χ2) of 0.9, whereas etched grains yielded an age of 334 ± 8 Ma 157 

with a MSWD of 1.37 and a P(χ2) of 0.08 (Fig. 2). These cooling dates are considerably younger 158 

if compared to the CH-0403 emplacement age of 391 ± 8 Ma (Solari et al., 2009). 159 

 160 
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4.5 OC-1008 161 

 162 

41 unetched apatites of OC-1008 yielded a U–Pb age of 839 ± 12 Ma with a MSWD of 0.98 and 163 

a P(χ2) of 0.50. After etching, the same apatites yielded an age of 830 ± 10 Ma with a MSWD of 164 

1.24 and a P(χ2) of 0.14 (Fig. 2). Both these apatite U–Pb ages are significantly younger than the 165 

age of granulite facies metamorphism in the Grenville-aged Oaxacan Complex (1 Ga to 980 Ma, 166 

Solari et al., 2014), and thus, can be considered as cooling ages. 167 

--- Figure 2 --- 168 

 169 

 170 

5 Discussion and concluding remarks 171 

 172 

Most samples, except OV-0421, yielded slightly younger apatite U–Pb dates after etching (up to 173 

3.3% in sample CH-0403). The lower intercept U–Pb ages obtained from unetched apatite grains 174 

are identical within errors to the U–Pb ages obtained on the same apatites etched (see diagram in 175 

Fig. 3). The results of our experimental study demonstrate that the chemical etching, required for 176 

the AFT analysis, has no important effect on the determination of apatite U–Pb ages by LA–ICP-177 

MS. Thus, as a conclusion of this work, LA–ICP-MS can be used safely to obtain simultaneously 178 

AFT and U–Pb ages (i.e., double dating), as it was already done in some studies without previous 179 

proof (Chew and Donelick, 2012; Liu et al., 2014; Glorie et al., 2017; Bonilla et al., 2020; Nieto-180 

Samaniego et al., 2020). 181 

--- Figure 3 --- 182 

 183 
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Supplement 185 

The supplement related to this article is available online at: https://... 186 
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 207 

 208 

Figure caption 209 

 210 

 211 

Figure 1 212 

Illustration displaying the LA–ICP-MS-based U–Pb dating of the same apatite crystal before and 213 

after chemical etching (i.e., etched in 5.5M nitric acid at 21 °C for 20 s). Spot diameter of 60 µm. 214 

 215 

 216 

Figure 2 217 

Tera–Wasserburg Concordia diagrams for the U–Pb results of unetched and etched apatites from 218 

samples OV-0421, MCH-38, TO-AM, CH-0403, and OC-1008. MSWD – mean square weighted 219 

deviation, Ngr – number of grains dated. 220 

 221 

 222 

Figure 3 223 

Binary plot showing the lower intercept U–Pb ages obtained on unetched and etched apatites. 224 

 225 

 226 

 227 

 228 
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Figure 2 423 
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Figure 3 428 
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 435 

Table 1 436 

 437 

Lithology, locality, and zircon U–Pb data for the selected experimental rock samples. 438 

Sample Unit and locality Rock type Zircon U–Pb age References 

OV-0421 Tres Sabanas Pluton, Guatemala deformed granite 115 ± 4 Ma Torres de León (2016) 

MCH-38 Chiapas Massif Complex, Mexico orthogneiss ca. 260 to ca. 252 Ma (?) Weber et al. (2007, 2008) 

TO-AM Totoltepec Pluton, Mexico granite ca. 308 to ca. 285 Ma (?) Kirsch et al. (2013) 

CH-0403 Altos Cuchumatanes, Guatemala granodiorite 391 ± 8 Ma Solari et al. (2009) 

OC-1008 Oaxacan Complex, Mexico paragneiss 990 ± 10 Ma Solari et al. (2014) 

 439 
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 454 

Table 2 455 

 456 

LA–ICP-MS protocol established at LEI to be applied for simultaneous apatite U–Pb and fission-457 

track in-situ double dating plus multielemental analysis (REEs, Y, Sr, Mn, Mg, Th, U, and Cl). 458 

ICP-MS operating conditions 

Instrument Thermo Scientific™ iCAP™ Qc 

Forward power 1450 W 

Carrier gas flow rate ~1 L/min (Ar) and ~0.35 L/min (He) 

Auxiliary gas flow rate ~1 L/min 

Plasma gas flow rate ~14 L/min 

Nitrogen ~3.5 mL/min 

Data acquisition parameters 

Mode of operating STD (standard mode) 

Sampling scheme –2NIST-612–2MAD–1DUR–10apts– 

Background scanning 15 s 

Data acquisition time 35 s 

Wash-out time 15 s 

Measured isotopes 

 

43Ca  44Ca  31P  35Cl  26Mg  55Mn  88Sr   

 
89Y  139La  140Ce  141Pr  146Nd  147Sm   

 
153Eu  157Gd  159Tb  163Dy  165Ho  166Er   

 
169Tm  172Yb  175Lu  232Th  238U  204Pb  

 
206Pb  207Pb  208Pb  202Hg    [total = 29] 

  

Laser ablation system  

Ablation cell RESOlution™ Laurin Technic S-155 

Model of laser Resonetics RESOlution™ LPX Pro 

Wavelength 193 nm (Excimer ArF) 

Repetition rate 4 Hz 

Energy density *4 J/cm2 

Mode of sampling spot diameter of 60 µm 

 459 

Note: MAD – “First mine Discovery” U–Pb apatite standard from Madagascar; DUR – Durango 460 

apatite from Cerro de Mercado mine (Mexico); apts – unknown apatites. (*) Constant laser pulse 461 

energy of 4 J/cm2, which was measured directly on target with a Coherent™ laser energy meter. 462 

 463 
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